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An extension of the vector-wave theory of antiferroelectric bent-core liquid crystals to columnar and soft-
crystalline mesophases is presented. We enumerate and describe the phases resulting from the condensation of
one, two, and three vector waves in the isotropic liquid of bent-core molecules. Beside the one-dimensional B2
and smectic-CP phases, 24 columnar and soft-crystalline orthorhombic, monoclinic, and triclinic phases can be
stabilized when two or three waves have nonparallel wave vectors. Their symmetry groups, molecular arrange-
ments, and phase diagrams are worked out and used to identify the structures of the main observed bent-core
phases and their various subphases.
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I. INTRODUCTION

Liquid crystalline phases exhibit intermediate properties
between isotropic liquids and solid crystals. Continuous ro-
tational or translational symmetries characterize the rather
simple properties of liquid states, whereas 230 discrete space
groups yield a wide variety of behaviors in solids. The dis-
covery of mesophases with two-dimensional �2D� and three-
dimensional �3D� orders, on the one hand, and of ferroelec-
tricity �1�, on the other hand, has progressively blurred the
borders between symmetry groups observed in solids and
liquids. This tendency was reinforced after antiferroelectric-
ity has been evidenced in systems of polar bent-core mol-
ecules �2�. In these systems eight main phases, denoted by
B1 to B8 �3–9�, with smectic, columnar, or 3D translational
orders were rapidly identified, soon followed by numerous
subphases. The smectic B2 phase �3,4� exhibits an antiferro-
electric, tilted, and spontaneously chiral molecular organiza-
tion �5� �space group P2221�. Smectic-CP �SmCP� �6� is an
orthorhombic achiral analog of B2, in which the molecular
planes are not tilted �space group Pmma�. Besides, several
orthorhombic and monoclinic two- or three-dimensional or-
dered structures, denoted by B1 and B3 to B8, have been
evidenced below the one-dimensional phases or below the
isotropic liquid. These phases are experimentally identified
by their textures, and each of them often exhibits distinct
physical properties in different compounds, which possibly
yield an extension of the bent-core polymorphism to Bn sub-
phases. For instance, several “phases” present either antifer-
roelectric or ferroelectric switching behaviors or even chiral
or achiral symmetries.

A complete phenomenological account of this polymor-
phism is not yet available. In conventional mesophases, the
phenomenological theories involve three main ingredients: a
second-rank tensor breaking the continuous rotational sym-
metry of the isotropic liquid, a density wave accounting for
the smectic layers formation, and the polarization and tilt
vectors. They represent order parameters associated with the
classical sequence of transitions: Isotropic→Nematic
→SmA→SmC�*�, etc., involving successive simple ordering
processes. Using density waves for explaining the formation
of smectic layers, and then vectors for the in-layer polar and
tilt orders, is quite similar to the classical approach in solids

�10�. An alternative to this two-step approach is possible in
bent-core antiferroelectric mesophases, in which the stabili-
zation of the smectic B2 and SmCp phases may come from a
direct condensation of a transverse vector wave in the iso-
tropic liquid �11�. When the condensed wave is linearly po-
larized, an achiral nontilted antiferroelectric smectic phase
�denoted by R� is stabilized. Its structure and symmetry cor-
respond to those observed in SmCP. When the wave is ellip-
tically polarized, the antiferroelectric smectic phase �denoted
by EL� becomes spontaneously chiral and tilted. It has the
same structure as that observed in B2. Furthermore, we have
tentatively proposed that the nonsmectic circular phase, de-
noted by C and stabilized when the vector wave is circularly
polarized, describes the underlying one-dimensional struc-
ture of the intriguing modulated B7 phase.

These phases are associated with a single branch in the
infinite star k�* of the wave vector k�. The corresponding mo-
lecular order varies consequently along a single space direc-
tion. To stabilize two- and three-dimensional phases, the con-
densation of an increasing number of wave vectors
belonging to k�* becomes necessary. When two nonparallel
waves are active, columnar phases are stabilized whereas
three noncoplanar waves lead to 3D soft crystals. Thus, a
single condensation mechanism could explain the polymor-
phism observed in a whole class of bent-core mesophases.
However, starting from the isotropic liquid yields tedious
calculations and provides a too rich and useless variety of
low-symmetry phases. We present here a simplified approach
in which, starting separately from R, C, or EL, further sym-
metry breakdowns are provoked by additional vector waves
normal to k�. As we shall presently see, this is sufficient to
account for the observed polymorphism in almost all bent-
core materials. Moreover, this simplified approach is less re-
strictive, since it describes also phases resulting from longi-
tudinal vector and density waves condensation. We use the
Landau theory in order to predict molecular structures and
phase diagrams. The methods worked out in this article are
closer to those used in solid crystals than to the conventional
approach in liquid crystals. In particular, we apply the full
machinery of space groups and their irreducible representa-
tions. The wide polymorphism and the structural features of
bent-core materials require this systematic use of classical
crystallographys.
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Group theory plays an important role for determining the
structure and the symmetry of the parent-phase elementary
instabilities. To each such instability is associated a given
order parameter, a list of stable phases, and the correspond-
ing phase diagrams. Starting from the isotropic phase, the
elementary instabilities are represented by tensor-wave order
parameters. Two tensors with distinct ranks or distinct polar-
izations �e.g., longitudinal or transverse� correspond then to
different instabilities. On the contrary, when studying the in-
stabilities of the ordered R, C, and EL phases, tensor waves
with distinct ranks may correspond to a single instability. For
instance, a scalar density wave and a longitudinal polariza-
tion wave have the same symmetry in R, so that both can be
equivalently used as the order parameter of the transition
associated with this corresponding instability. In fact, both
simultaneously onset at the critical temperature and, at the
phenomenological point of view, choosing one of them as the
order parameter is arbitrary �though in a given material one
of these waves may physically play the central role�. This
means that using either a density wave or a polarization
wave yields the same phases with qualitatively the same
physical properties and phase diagrams. We shall generically
use the expression “wave type” to represent the set of
equivalent tensor waves associated with a single instability.
For instance, in R density and longitudinal polarization
waves are of the same type. The group theoretical analysis
yielding the list of wave types for each high-symmetry phase
is presented in the Appendix. In the following sections, we
keep only the symbols of the irreducible representations to
label the wave types �e.g., density and longitudinal polariza-
tion waves along Ox in R belong to the “A1” �e�x� wave type�.

The detailed properties of the relevant stable phases, pri-
marily their behaviors under electric field, will be presented
elsewhere. The present work is not, however, restricted to
drawing up lists of phases, space groups, and group/
subgroup relationships. It can be used for refining the mo-
lecular structure models. Indeed, although much effort has
been initially paid to identifying the structures and space
groups of the Bn phases, until recently several structures
remained unknown, so that the macroscopic characterization
based on electro-optic properties and textures is still prefer-
entially used to classify the different bent-core mesophases.
Let us finally stress that, despite the accumulation of experi-
mental data in the past decade, numerous contradictory the-
oretical or heuristic models are still competing. Confronting
them with columnar and soft-crystalline phases could permit
one to evaluate these models.

The second section of the article presents the vector-wave
model. The two following sections are devoted to the enu-
meration of the 2D and 3D phases stabilized by progressive
ordering in the smectic phases R and EL, together with their
space groups and the corresponding phase diagrams. The
methods used to complete this analysis are briefly presented
in the first example of the phase A1

x worked out in Sec. III.
They use standard techniques of the phenomenological
theory of phase transitions. For the other phases, we only
present the main qualitative results of this analysis, symme-
try, structures, and topological characteristics of the phase
diagrams �order of the transition lines, number and nature of
critical points�. In the last section, we discuss the identifica-

tion of the theoretical stable phases with observed structures
and compare our approach with models available in the lit-
erature.

II. THE VECTOR-WAVE MODEL

All the elementary structural instabilities of the isotropic
liquid state are, according to the Landau theory of phase
transitions �12�, associated with the condensation of tensor
waves. Such waves are described, on the one hand, by their
wave vector k� and, on the other hand, by the rank “r” and the
polarization of their tensor �13�. In this respect, two cases
must be distinguished: �i� For k� =0, the order parameters are
homogeneous tensors �14�. The ordered nematic phases are
then anisotropic but remain homogeneous, and �ii� for k� �0,
inhomogeneous periodic structures can be stabilized. For in-
stance, the smectic-A phase is induced by the condensation
of a scalar �r=0� density wave �15�. Within a given elemen-
tary mechanism, one has to consider similar waves propagat-
ing in all the directions. Indeed, the star k�* of the wave vector
contains infinitely many branches k� located on the sphere k
= �k��=constant in the reciprocal space. In the simplest case
when only two opposite branches of the star condense at the
transition, the ordered phase has the structure of a 1D wave
with a period �=2� /k.

Before presenting the way we deal with vector waves �r
=1�, let us first recall the similar case of the SmA phase
formation �16�. The layer structure of SmA results from the
condensation of a 1D scalar �r=0� density wave ��k,

��k��r�� = �k�e
ik�·r� + �−k�e

−ik�·r�. �1�

Although the order parameter is formally infinitely dimen-
sional, the transition is described by only two “effective”
components, �k� and �−k� =�k�

*, associated with the pair of

branches �±k�� active in k�*. The same order parameter permits
further stabilizations of two- and three-dimensional ordered
structures when several density waves with nonparallel wave
vectors condense simultaneously. The density field reads
then

��r�� = �0 + �
k�

��k��r�� ,

where the sum runs over the active branches of the star. The
stable phases have discrete periodic symmetries in two or
three dimensions together with discrete point groups.

A similar approach may be used to account for antiferro-
electricity in bent-core liquid crystals. A transverse vector
wave belonging to an infinite-dimensional order parameter is
then involved in the condensation process instead of the den-
sity wave. The simplest phases stabilized are then one-
dimensionally periodic and antiferroelectric �11� because
only two wave vectors �±k�� are active in k�*. Their structures
can be described by means of an effective order parameter
that has only four components, �1, �2, �1

*, and �2
* defined

by �see Eq. �1��.
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P� �r�� = �e�x + ie�y���1eik�·r� + �2e−ik�·r��

+ �e�x − ie�y���1
*e−ik�·r� + �2

*eik�·r�� , �2�

where the polar vector wave P� �r�� represents the mean local
polarization associated with the bent-core twofold molecular
axis ordering. e�x and e�y are unit vectors parallel to Ox and
Oy, respectively. The vector wave k� is a phenomenological
parameter that must be determined experimentally or calcu-

lated within microscopic models. P� �r�� is coupled with an

axial wave A� �r�� representing the tilt of the molecular plane
with respect to the direction of the wave vector which con-
stitutes a “pseudoproper order parameter �17� .” The molecu-
lar orientations are determined by the equilibrium amplitudes
and phases of these two waves. Three “unprimed” phases
�displayed in Fig. 1� can first be stabilized when the phases
of the two waves are locked:

�i� The “circular” C phase, in which P� �r�� and A� �r�� are
circularly polarized. Its symmetry group �122 �continuous
group of a regular helix� yields a structure remaining homo-
geneous �no density wave� and macroscopically isotropic in
the plane normal to k�. We have proposed �11� that this chiral
helielectric nonsmectic phase corresponds to the 1D approxi-
mation of B7 when one neglects the long wavelength modu-
lation normal to the main periodicity direction. Setting k�
along Oz, the polarization and tilt waves read then

P� C�r�� = PC	cos�kz�
sin�kz�


, A� C�r�� = AC	cos�kz�
sin�kz�


 �3�

in the x-y plane. PC and AC denote their real wave ampli-
tudes, vanishing as �T−Tc�1/2 at the C→ Isotropic transition
temperature Tc.

�ii� In the “linear” R phase, the right- and left-handed
circular waves in Eq. �2� have the same amplitude so that;

P� R�r�� = PR	cos�kz�
0


, A� R�r�� = AR	 0

sin�kz�

 . �4�

Its discrete orthorhombic group Pmma describes an achiral
smectic phase, which can be either antiferroelectric or anti-
clinic. In the former case, the bent-core molecules align with
their polarizations normal to Oz, forming the antiferroelectric
two-layer sequence displayed in Fig. 1.

�iii� In the “elliptic” EL phase, the two circular waves

forming P� �r�� in Eq. �2� have independent amplitudes, yield-
ing a chiral, antiferroelectric, and anticlinic structure with
symmetry P2221. In this phase, the polarization and tilt
fields,

P� EL�r�� = 	Px cos�kz�
Py sin�kz�


, A� EL�r�� = 	Ax cos�kz�
Ay sin�kz�


 , �5�

coincide with the structure of the phase B2 �5,11�.
When the phases of A� �r�� and P� �r�� are no longer locked

together, additional 1D “primed” phases, denoted by C�, R�,
R�, and EL� with symmetries �1, P21/m, Pmc21, and P21,
respectively, condense spontaneously.

Likewise in the solidification process, the condensation of
several nonparallel wave vectors in the star of k� leads to a
large variety of 2D and 3D low-symmetry phases. The polar
and axial vector waves read then �P� k��r�� and �A� k��r��, respec-
tively, where the sums run over the active branches of the
star k�*. For instance, after the simultaneous condensations of
three perpendicular wave vectors, at least 11 cubic phases
with space groups Pn3n, P4132, P4332, Fd3c, Fm3c, Ia3d,
I432, Im3, I4̄3d, Ia3, and I4̄3m can be stabilized �18�. Simi-
larly, two perpendicular wave vectors can give rise to the
appearance of many quadratic phases. In addition, such per-
pendicular wave vectors permit also the stabilization of a
number of less symmetric states. Finally, various other wave-
vector configurations complete the list of possible ordered
structures within the vector-wave model. However, in bent-
core molecular compounds, neither cubic nor quadratic
phases have yet been evidenced. The tedious classification of
all the vector-wave stabilized phases is thus not necessary to
account for the observed polymorphism. The bent-core 2D
and 3D phases can be more simply obtained as subphases of
C, R, and EL, by considering the condensation of one or two
additional waves in these three states without referring to
their common origin in the isotropic liquid. The symmetry
groups of the 2D and 3D phases are then subgroups of �122,
Pmma, or P2221, respectively, so they cannot have sub-
phases with tetragonal or cubic symmetries. The correspond-
ing list of possible stable phases remains quite large �24
phases� because �i� one has to consider three high-symmetry
phases; �ii� for each one, the wave vectors can appear with
various nonequivalent relative orientations; �iii� each wave
vector is associated with tensors of various ranks; �iv� each
rank yields several ordered phases; and �v� several equivalent
waves can be simultaneously active.

In order to predict the molecular arrangements, it is nec-

essary to work out, in addition to P� and A� , the lowest har-
monics of the density, which determines the most probable
positions of the molecules in the unit cell. In the smectic
stable phases, the period of the density wave is half that of
the vector waves. In 2D and 3D structures, density waves are
induced in the same directions as the vector waves are.

The molecules are located at symmetric positions in the
unit cell where the density function is maximum. For in-
stance, in the R phase, the density maxima can coincide ei-

ther with those of P� or with those of A� . These possibilities
define two configurations of the same phase, exhibiting dif-
ferent physical properties �11�. In the first case, the structure
is antiferroelectric and not tilted �Fig. 1�, whereas in the
other case the structure is anticlinic with approximately zero
local polarization. The same diversity arises in the higher
dimensional mesophases. In a given stable phase, the sym-
metry analysis alone cannot foresee which configuration will
be actually stable, since it depends on the sign of the cou-
pling coefficients between polarization and density waves.
Therefore, the thermodynamic analysis assigns different re-
gions of the phase diagram to each variant of a single phase.

III. SUBPHASES OF SmCP

When additional vector waves �with wave vectors K� nor-
mal to k�� condense, the linear R phase �i.e., SmCP� can
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undergo various transitions toward columnar or 3D phases.
All the corresponding elementary instabilities are driven by
scalar or vector waves giving additional contributions to the

structural fields P� �r��, A� �r��, and ��r��.
Let us illustrate these mechanisms with the simplest cases

of waves condensing along the direction Ox parallel to the
polarization in R, as follows:

�i� A density wave, ���x�, breaks the homogeneity of the
smectic planes along Ox, but it preserves the homogeneity
along Oy, so that a columnar phase is stabilized with its
columns parallel to Oy. In the smectic planes, the molecules
are concentrated around the maxima of the wave. Due to the
breakdown of the continuous translations along Ox, the mol-
ecules at the maxima and those between the maxima of the
density wave are no longer equivalent. Accordingly, the
mean polarization at the maxima and out of the maxima
become different, but they both remain parallel to Ox be-
cause the twofold axis fixing the polarization direction in R

is not broken by the density wave. This modulation �P�x� e�x
along Ox of the polarization parallel to Ox corresponds to the
condensation of a longitudinal polarization wave, which is
induced by the “primary” condensation of the density wave.
Reciprocally, one sees immediately that the spontaneous con-
densation of such a polarization wave induces the density
wave. This means that the two waves are thermodynamically
and symmetrically equivalent �technically, span the same ir-
reducible representation of the R space group�. In the lan-
guage of the theory of phase transitions, one says that the
density and polarization waves are pseudoproper order pa-
rameters. We shall say more simply that they are of the same
wave type �namely, A1�e�x��. The fact that they appear simul-
taneously is related to the presence of a bilinear coupling
term in the free energy �I3 in Eq. �7�� between the amplitudes
of the two waves. This term is proportional to the phase shift
between the maxima of the two waves along Ox, so that two
distinct ordered phases can be stabilized. When the phase
shift vanishes �coincidence between the maxima�, an apolar
“unprimed” phase appears. When the phase shift becomes
finite, the symmetry of the unprimed phase is further broken,
which stabilizes a polar “primed” phase. Infinitely many
other pseudoproper tensor waves have in fact the same
A1�e�x� type and appear also at the transition. However, they
cannot stabilize additional less symmetric phases and so can
be firstly ignored in the thermodynamic description.

�ii� On the contrary, a longitudinal tilt wave �A�x�e�x,
which represents the tilt of the molecular plane around Ox
with respect to its x-z locked value in R, breaks the x-z mir-
ror plane of the polarization wave. Thus, this axial wave has
a different type as A1�e�x� and defines an independent elemen-
tary instability, which provokes an anticlinic tilting of the
structure in the direction Ox.

�iii� Finally, transverse axial and polar waves define the
two remaining independent elementary instabilities of the R
phase associated with waves along Ox.

As stated in the previous section we shall usually assume

that in the isotropic liquid K� belongs to the star k�*, so that

one has �K� ���k��. This equality yields low-symmetry phases
with formally tetragonal unit cells. In fact, these unit cells
are actually rectangular, for the corresponding space groups
are orthorhombic or monoclinic. The rectangular deforma-
tion of the tetragonal cell results from the onset of secondary
homogeneous strain tensors induced by the primary tensor
waves. The previous equality of the wave-vector lengths is
convenient for presenting geometrical and analytical results
in a compact form. We shall discuss its relation to the experi-
mental situation in Sec. VI. The present section is devoted to
the enumeration and description of the ordered phases aris-
ing below R. The procedure used to obtain space groups and
molecular arrangements is worked out in detail in the case of
the phase denoted by A1

x, which coincides with the B1 bent-
core columnar phase.

In R three nonequivalent directions in the x-y plane �nor-
mal to k�� must be considered.

�1� K� =Kxe�x is parallel to the plane of polarization in R

�see Fig. 1�. The star of K� �set of wave vectors obtained from

K� after applying the point symmetries of R� has two branches

FIG. 1. Molecular structures of the one-dimensional circular
�C�, linear �R=SmCP� and elliptic �EL=B2� phases. All the mol-
ecules lying in one plane normal to Oz have the same orientation.
One bent-core molecule is represented with one vector and one

two-end arrow. The mean polarization P� �r�� is parallel to the mo-
lecular polarization shown in the figures by a one-end arrow. The

tilt vector A� �r�� is parallel to the rotation axis turning the molecular
plane from its reference orientation �parallel to the vector wave k�

and the polarization� to its actual configuration shown in the figure.

One sees that in C and EL A� �r�� is parallel to P� �r�� and cancels in R
�at least where the molecules are represented�. In R and EL, only
the molecules located at the maxima of the density wave �i.e., in the
smectic planes� are represented. We have pictured the antiferroelec-
tric configuration of R, in which the molecules lying in the smectic
planes are not tilted �whereas molecules located between the planes
are tilted�. In the anticlinic configuration �not represented�, the mol-
ecules in the smectic planes are not polarized on the average �due to
statistical jumps between opposite values of the polarization�, but
they are tilted.
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and the resulting low-symmetry phases are two-dimensional.

K� yields four nonequivalent wave types, denoted by A1�e�x�,
A2�e�x�, B1�e�x�, and B2�e�x�.

�2� K� =Kye�y is perpendicular to the polarization in R. The
star has two branches and the low-symmetry phases are two-
dimensional. The waves are again of the types A1�e�y�, A2�e�y�,
B1�e�y�, and B2�e�y�.

�3� K� =Kxe�x+Kye�y lies in the general direction of the x-y
plane. Its star contains four branches and the corresponding
induced lattices are either 2D or 3D. Only two types of
waves, denoted by R+ and R−, are permitted.

A. K� =Kxe�x

For convenience A1�e�x�, A2�e�x�, B1�e�x�, and B2�e�x� denote
the four wave types. A1�e�x� and A2�e�x� are spanned by lon-
gitudinal polar �polarization� and axial �tilt� waves, respec-
tively. B1�e�x� �or B2�e�x�� is spanned by a transverse polar
wave polarized along Oz �Oy� or equivalently by a trans-
verse axial wave polarized along Oy �Oz�. Each wave leads
to a single low-symmetry unprimed phase that we denote by
A1

x, A2
x, B1

x, and B2
x. They have “nonminimal” orthorhombic

symmetry groups belonging to the apolar D2h class. There-
fore, for each wave, the condensation of a second wave with
the same type is necessary to complete the symmetry-
breaking process �see, e.g., Ref. �19��, i.e., to stabilize mini-
mal symmetry groups associated with this wave type. The
corresponding “reducible” order parameters yield two dis-
tinct ordered phases for each wave type. The additional
‘‘primed’’ phases, denoted by A1

x�, A2
x�, B1

x�, and B2
x�, remain

orthorhombic but in the polar C2v class. Indeed, when the
phases of the two complex wave amplitudes are shifted �we
say that the two order parameters are not “parallel”�, the

mirror symmetry normal to K� is broken. The primed phases
are spontaneously ferrielectric along Ox though they remain
achiral. Their space groups are listed in Table I.

The form of the free energy accounting for the thermody-
namic features of the transition is the same for each of the
four wave types. So, let us present it in the case of the A1�e�x�
wave type, and let �=�ei� and ��=��ei�� denote the complex
amplitudes of two such waves �e.g., a density wave and a
longitudinal polarization wave with the same wave vector

K� =Kxe�x�. � represents the complex amplitude of the density
wave along Ox ����x�� whereas �� is the amplitude of the

longitudinal polarization wave ��P� �x��,

���x� = �ei�Kxx+�� + �e−i�Kxx+��,

�P� �x� = i���ei�Kxx+��� − ��e−i�Kxx+����e�x. �6�

In the unprimed phase, � and �� are locked, �=��+n� with
n an integer, whereas the primed phase is associated with
generic values of � and ��. The free energy F depends on the
three invariant polynomials, I1=��*, I2=����*, and I3
=���*+���*=2��� cos��−���,

F = a1I1 + a2I2 + a3I3 + a11I1
2 + a22I2

2 + a33I3
2 + a12I1I2 + ¯ .

�7�

I1 and I2 separately give the condensation energies associated
with the density and polarization waves. The coupling term
I3 tends to lock the phase shift between the two waves �in
A1

x�, and controls its temperature variation when the locking
fails �in A1

x��. Minimization of F with respect to �, ��, and
�−�� yields the equilibrium equations of state of the ordered
phases,

�� 0 �� cos�� − ���
0 �� � cos�� − ���
0 0 ��� sin��� − ��

�a1 + 2a11I1 + a12I2 + ¯

a2 + 2a22I2 + a12I1 + ¯

a3 + 2a33I3 + a13I1 + ¯

� = 0.

�8�

Their stability conditions d2F	0 yield the phase diagrams
depicted in Fig. 2. The simplest complete phase diagram in
which the three phases have extended domains of stability is
obtained with the “canonical” free energy �Morse function of
the invariants I1, I2, and I3�,

Fcan = �
i

aiIi +
bi

2
Ii

2.

The R→A1
x and A1

x →A1
x� transition lines are then always

second order. Their equations are given by

4a1a2 = a3
2 �a1,a2 	 0� ,

a1a2

�b1b2

=
a3

2

b3
�a1,a2 
 0� . �9�

a1, a2, and a3 are linear functions of the external fields, say
temperature T and concentration c: ai=aio+aiTT+aicc,
whereas aio, aiT, aic, and bi are constant parameters
to be determined experimentally. Varying T in the
neighborhood of the R→A1

x transition line allows us to write
ai=�i+�i�Tc−T�, where �i=ai�Tc�=aio+aiTTc+aicc. Solving
Eqs. �8� gives then the thermodynamic behavior of the po-
larization and density waves amplitudes,

�2 = 2
�1�2 + �2�1

�s − 2��1 − �s + 2��2

Tc − T

�1
,

��2 = 2
�1�2 + �2�1

�s − 2��1 − �s + 2��2

Tc − T

�2
, �10�

where s=b3 /�b1b2. The ratio relating the two amplitudes de-
pends only on the quadratic coefficients �i :� /��=��2 /�1.
Thus, when �2��1, the transition is mainly driven by the
density wave �, while in the opposite case �2�1, the domi-
nant mechanism is the condensation of the longitudinal po-
larization wave ��.

When higher-degree polynomials are taken into account
in the free energy �7�, a direct first-order transition becomes
possible between R and A1

x�. The corresponding transition
line is limited by two tricritical points and crosses the
A1

x →A1
x� transition line at two three-phase points. The axes

of the phase diagrams depend linearly on two external ther-
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modynamic parameters such as temperature and concentra-
tion. When only the temperature varies, the equilibrium state
moves along a straight line in the phase diagram, giving rise
to the “normal” sequence A1

x�→A1
x →R or the reentrant se-

quence A1
x →A1

x�→A1
x →R. The same free energy �7� and the

corresponding phase diagrams hold also for the waves
A2�e�x�, B1�e�x�, and B2�e�x�.

Let us describe the vector fields and molecular structures

of the unprimed phases. The polarization and tilt P� �x ,z� and

A� �x ,z� together with the density ��x ,z� depend on x and z.
Using the fact that A1�e�x� is spanned by a longitudinal polar
wave, A2�e�x� by a longitudinal axial wave, B1 and B2 by
polar �or equivalently axial� transverse waves, and keeping

only the lowest harmonics, P� �x ,z� and A� �x ,z� read �in the

domains defined by �=��=0, and setting for simplicity �K� �
= �k��=1�,

A1
x: P� = P0 sin�z�e�x + �� sin�x�e�x,

A� = A0 cos�z�e�y ,

A2
x: P� = P0 sin�z�e�x + �1 cos�x�cos�z�e�y ,

A� = A0 cos�z�e�y + �� sin�x�e�x,

B1
x: P� = P0 sin�z�e�x + � sin�x�e�z,

A� = A0 cos�z�e�y + �� cos�x�e�y ,

B2
x: P� = P0 sin�z�e�x + �� sin�x�e�y ,

A� = A0 cos�z�e�y + �� sin�x�e�z,

where �� represents the amplitude of the tilt wave having the
same type as � �density� and �� �polarization�. Close to Tc
these three amplitudes are proportional. �1 is a secondary

order parameter vanishing in R. P� and A� do not completely
characterize the structures of the ordered phases since they
do not provide the positions of the molecules in the unit cell.
Indeed, the molecules are mainly concentrated around the

maxima of the density wave that we shall work out below.

The extrema of P� and A� in the density lattice are not com-
pletely determined by the space groups, so that several non-
equivalent structures with the same symmetry may be asso-
ciated with each phase. Some examples of the corresponding
waves and molecular structures are depicted in Fig. 3.

Let us take as an example the determination of the mo-
lecular positions in A1

x. In this phase the first harmonics of
the density read

��x,z� = �0 + �z cos�2z� + � cos�x� + �2 sin�z�sin�x� ,

�11�

where �0 is the density in the isotropic liquid, �z and � de-
scribe its smectic modulations in R and A1

x, whereas �2 is a
nonsymmetry-breaking density wave that is induced in A1

x by
its coupling with �. One can easily show that � and �2 vary
in A1

x as �Tc−T�1/2 and �Tc−T�, respectively �Tc denotes the
R→A1

x transition temperature�. Three possible sets of density
maxima are indicated in Fig. 3�a�. The molecular orientations
are determined by the corresponding local values of polar-
ization and tilt at these points. In case �1� of Fig. 3�a� the
positions of the molecules are fixed at symmetry points of
the unit cell. In cases �2� and �3�, the molecular positions
vary with temperature along Oxz and Ox, respectively. The

TABLE I. List of phases stabilized below the linear R phase �SmCP� when K� is parallel to e�x. The first
column indicates the wave type. The second column indicates the nature of the waves. The third and fourth
columns indicate the names and space groups of the unprimed and primed phases, respectively. The letter
between parentheses indicates the direction parallel to the rotation axis or normal to the mirror plane: e.g., in
Pm�y�c�z�21�x� the gliding plane “c” is normal to Oz, the mirror plane m is normal to Oy, and the twofold
screw axis 21 is parallel to Ox.

Vector waves Phases Ai /Bi Phases Ai� /Bi�

A1�e�x� Longitudinal polar A1
x: Pmma�x� D2h

5 A1
x�: Pmm2�x� C2v

1

A2�e�x� Longitudinal axial A2
x: Pcca�x� D2h

8 A2
x�: Pcc2�x� C2v

3

B1�e�x� Transverse B1
x: Pb�z�a�x�m�y� D2h

9 B1
x�: Pm�y�c�z�21�x� C2v

2

B2�e�x� Transverse B2
x: Pb�y�c�x�m�z� D2h

11 B2
x�: Pm�z�c�y�21�x� C2v

2

FIG. 2. Phase diagrams of the R�SmCP�→A1
x�B1� transition.

This diagram holds also for the phases Ay
1 A2

x,y, B1
x,y, and B2

x,y �see
Tables I and II�. Continuous and broken lines indicate second- and
first-order transitions, respectively. �a� When the free energy �Eq.
�7�� is truncated up to the fourth degree. �b� When the free energy is
truncated up to the sixth degree. The axes represent phenomeno-
logical coefficients defined in Eq. �7�, which are combinations of
two external parameters such as temperature and concentration.
Varying only the temperature amounts to a move along straight
lines in the diagrams.
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structure �1� is purely anticlinic and cannot be obtained from
the antiferroelectric variant of R presented in Fig. 1 and ob-
served in the SmCP phase. In contrast, �1� can appear from
the anticlinic variant of R after the condensation of the den-
sity wave � cos�x�, which thus represents the primary order
parameter of the transition. The vector wave �� sin�x�e�x is
then an induced secondary pseudoproper order parameter.
On the contrary, in case �2�, the antiferroelectric structure
results from the condensation of the vector wave in the an-
tiferroelectric variant of R displayed in Fig. 1. The molecular
positions remain thus close to the maxima x=z= ±1/4 of the
polarization, even though they can vary slightly around these
maxima in the direction Ox. Therefore, the density waves are
weak secondary pseudoproper or improper order parameters.
In case �3�, the structure is simultaneously anticlinic and an-
tiferroelectric, and both waves participate to the ordering
mechanism on the same footing.

A1
x belongs to the same symmetry class Pmma as the par-

ent R phase does, but it has a 2D lattice instead of a 1D
smectic structure. Thus, the polarization and tilt waves re-
main everywhere linearly polarized and perpendicular,

though they become modulated along Ox. The maxima of A�

and P� are shown in the two first columns of Fig. 3�b�,
whereas the molecular structures corresponding to the case
�3� discussed above are shown in the third column. In case
�3�, the positions of the molecules coincide approximately

with the maxima of P� and the zeroes of A� , so that the tilt
vanishes and the structure is almost purely antiferroelectric
with two molecules in one unit cell. The corresponding
primed A1

x� phase is ferrielectric because, although the polar-
izations direction remains frozen along Ox, the mean polar-
ization magnitudes of two molecules in one unit cell become
different. Indeed, due to the lost of the gliding plane of A1

x

normal to Ox, these two molecules are no longer equivalent
in A1

x� with respect to fluctuations reversing the sense of the
molecular polarization. In A2

x when the molecules are located

at the P� maxima �Fig. 3�b�� the structure is antiferroelectric
along Oz and anticlinic along Ox and Oz. In B1

x the four
molecular planes lie in the x-z plane, but their polarizations
are turned around Oy. In B2

x the planes of the two molecules
are tilted around Oz.

B. K� =Kye�y

As above, each of the four types of waves, denoted by
A1�e�y�, A2�e�y�, B1�e�y�, and B2�e�y�, leads to one orthorhombic
nonpolar unprimed and one orthorhombic polar primed co-
lumnar phases, presented in Table II. The thermodynamic

analysis and phase diagrams �Fig. 2� are the same as for K�

=Kxe�x. Two structures for each unprimed phase are drawn in
Fig. 4. Although the space groups of A1

x and A1
y are nominally

identical �Pmma�, they are not actually isomorphic, so that
A1

x and A1
y are distinct phases. Indeed, in A1

x the gliding plane
“a” �in Pmma� is normal to a direction of discrete transla-

tions �Ox since K� is along Ox� while in A1
y it is normal to the

direction of continuous translations �Ox since in this case K�

is along Oy�.

C. K� =Kxe�x+Kye�y

K� =Kxe�x+Kye�y permits two types of waves, denoted by R+

�symmetric with respect to the mirror plane normal to k�� and
by R− �antisymmetric�, respectively. R+ may be spanned ei-
ther by a density wave, a longitudinal polarization wave, a

transverse polarization wave with P� parallel to the smectic

layers, or a transverse axial �tilt� wave with A� normal to the
smectic layers. R− may be spanned either by a longitudinal

tilt wave, a transverse polarization wave with P� normal to

the smectic layers, or a transverse axial �tilt� wave with A�

parallel to the smectic layers. In each case, the order param-
eter has four components �1, �2, �1

*, and �2
* associated

with the four branches K� 1= �Kx ,Ky ,0�, K� 2= �−Kx ,Ky ,0�,
K� 3= �−Kx ,−Ky ,0�, and K� 4= �Kx ,−Ky ,0� of K� *. �1 and �2 are
thus the complex amplitudes of waves propagating along
�Kx ,Ky�, and �−Kx ,Ky�, respectively. The phases of �1 and
�2 are Goldstone variables, which can be made to zero by
suitably choosing the origin of the coordinates in the x-y
plane. �1 and �2 represent then the real amplitudes of the

waves along K� 1 and K� 2.
The free energy depends on two invariant polynomials,

I1=�1�1
*+�2�2

* and I2=�1�1
*�2�2

*. In contrast with the

FIG. 3. �a� Molecular structures in three variants of the phase
A1

x. �b� Waves and molecular structures in one unit cell of the phases
A1

x, A2
x, B1

x, and B2
x, �see Table I�. The wave components normal to

Oy are represented by in-plane arrows, whereas the parallel compo-

nent is represented by circles. First column: Tilt fields A� �x ,z�. Sec-

ond column: Polarization fields P� �x ,z�. Third column: Molecular
configurations. The representation of single molecules is explained
in Fig. 1.
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waves � and �� traveling along Ox or Oy, studied in sections
A and B there is no bilinear coupling between �1 and �2 so
that a stable low-symmetry phase where �1 �or equivalently
in an equivalent domain �2� cancels can be stabilized. The
biquadratic coupling term I2 permits the stabilization of this
phase and leads, in the general case, to distinct values for the
equilibrium amplitudes of the two waves. Minimizing the
corresponding free energy F�I1 , I2� yields three ordered
states for each wave type R±,

�i� One columnar phase for �2=0 �or �1=0 in another
domain� �denoted by I±�.

�ii� One three-dimensional high-symmetry phase for
��1�= ��2��0 �denoted by II±�.

�iii� One three-dimensional low-symmetry phase for
��1�� ��2��0 �denoted by III±�.

Their orthorhombic and monoclinic space groups are pre-
sented in Table III. All the ordered phases are achiral and
nonpolar. The phase diagrams are shown in Fig. 5. At the
eighth-degree term approximation of the free energy, all the
permitted transitions may be second order and the phases
merge at a four-phase point. Higher-degree expansions per-
mit direct first-order transitions from R to III±, the corre-
sponding transition lines being surrounded by three-phase
points. Some possible molecular structures and group-
subgroup relationships are depicted in Fig. 6.

In the two next sections, we present similar mechanisms
corresponding to instabilities of the chiral elliptic phase �B2�.
Since there is no fundamental difference with the mecha-
nisms discussed above, we shall describe succinctly the clas-
sifications and shall enumerate the corresponding phases and
space groups in several tables and figures.

IV. SUBPHASES OF B2

Any anisotropic perturbation of C transforms it into the
elliptic phase, so that the condensation of waves in C yields
the same subphases as their condensation in EL �i.e., B2�. On
the other hand, in many respects the situation in EL is similar
to that in R, and one has again to consider wave vectors
along Ox, Oy, and in the general direction of the x-y plane.
However, since the chiral elliptic point group �D2� is con-
tained in the achiral linear point group �D2h�, the number of
wave types in EL is divided by two with respect to that in R.
The types denoted by A1 and A2 in R become equivalent in
EL and give rise to a single type denoted by A, whereas B1

and B2 give rise to the type B. Analogously, the type R+
becomes equivalent to R−. Hence, each couple of R sub-
phases �e.g., A1

x and A2
x� gives rise to a single subphase of EL.

The chiral symmetry group of this single phase is the com-
mon subgroup of its two R analogs. For instance, the sym-
metry of the phase denoted by Ax, stabilized as a subphase of

EL when K� is parallel to Ox, is the intersection of the A1
x and

A2
x space groups �see Table I�. The molecular arrangement in

Ax �Fig. 7� can be obtained from A1
x by tilting the molecular

TABLE II. List of phases stabilized below the linear R phase �SmCP� when K� is parallel to e�y. The first
column indicates the wave type. The second column indicates the nature of the waves. The third and fourth
columns indicate the names and space groups of the unprimed and primed phases, respectively.

Vector waves Phases Ai /Bi Phases Ai� /Bi�

A1�e�y� Longitudinal polar A1
y: Pmma�y� D2h

5 A1
y�: Pm�z�a�x�2�y� C2v

4

A2�e�y� Longitudinal axial A2
y: Pm�y�n�x�a�z� D2h

7 A2
y�: Pn�x�c�z�2�y� C2v

6

B1�e�y� Transverse B1
y: Pmmn�x� D2h

13 B1
y�: Pm�z�n�x�21�y� C2v

7

B2�e�y� Transverse B2
y: Pb�z�c�x�m�y� D2h

11 B2
y�: Pc�x�a�z�21�y� C2v

5

FIG. 4. Columnar subphases of R when K� =Ke�y. �a� Scheme of
bent-core molecules seen from within their own plane. �b� Molecu-
lar arrangements in one unit cell of the phases R, A1

y, A2
y, B2

y, and B2
y

�see Table II�. The two columns display two variants of the same
phase corresponding to two possible locations of the density
maxima. The positions of the symmetry elements in the unit cell are
the same in the two columns. In A1

y �first column� and B1
y �second

column� the molecular polarizations are normal to Oz.
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planes around Ox, or equivalently from A2
x by a disordering

transition, which makes more likely one of the two equiva-
lent molecular positions in each smectic layer �see Fig. 3�.
The three sets of ordered phases corresponding to K� along
Ox, Oy, and Oxy are listed in Tables IV and V, and their
structures are depicted in Figs. 7 and 8.

A. K� is parallel to Ox or to Oy

When K� is parallel to Ox or to Oy, the unprimed struc-
tures are columnar, chiral, orthorhombic, and nonpolar,
whereas the primed phases are columnar, chiral, monoclinic,
and ferroelectric. The twofold rotation axes of the mono-

clinic phases are parallel to K� . Ax and Ay �A�x,y, Bx,y, and
B�x,y� are distinct subphases of EL, though they have the
same formal space group P2221 �P21212, P2, and P21�.
However, these phases can also be stabilized directly from C
�or, similarly, from the nematic or the isotropic phases�. In
this case, Ax and Ay �or Bx and By, etc.� form two variants of
a single phase. Consequently, close to the stability domain of
EL in the phase diagram, Ax and Ay are necessarily separated
by a first-order transition line. Far from EL, this line can
possess a critical end point.

When the waves A and B appear together, two additional
monoclinic phases �AB and ABZ� and one triclinic phase
�AB0� can also be stabilized. Each of these phases has one x
and one y variant. Their space groups are presented in Table
V and some molecular structures are shown in Fig. 8.

A�e�x� is spanned either by a longitudinal vector wave

�P� �x�=�Px e�x or by a scalar wave ���x�. Let us denote their

complex amplitudes by �+=�+ei�+ and �+�=�+�ei�+�, respec-
tively,

�Px = ��+eix − �+
*e−ix�, �� = ��+�eix + �+�

*e−ix� .

Likewise, B�e�x� is spanned by any of the two transverse vec-
tor waves ���=�−ei�−, �−�=�−ei��−�,

�Pz = ��−eix + �−
*e−ix�, �Py = ��−�eix + �−�

*e−ix� ,

where �±=�±�+n� in the unprimed phases.
When one does not attempt to account for the primed

phases, the free energy F may be written as a function of �+
and �− alone, and it reads in the fourth-order term approxi-
mation

F��+,�−� = a1I1 + a2I2 + cI3 +
a11

2
I1

2 +
a22

2
I2

2 + a12I1I2,

�12�

where I1=�+�+
*, I2=�−�−

*, I3= ��+�−
*�2+ ��−�+

*�2, with
a11a22� �a12±c�2. The coupling term I3 has no effect in the
most symmetric phases A and B. On the other hand, it fixes
�+=�− or �+= �

2 +�− in the intermediate phases AB and it
controls the temperature variation of �+−�− in the least sym-
metric phase AB0 �provided a term proportional to I3

2 is
added to the free energy �12� for stabilizing AB0�. Figure 9
displays phase diagrams associated with Eq. �12�. The tri-
clinic phase AB0 is not stable within this approximation. All
the transition lines are second order and merge at four-phase
points. The stable phase is AB when a3�0 and ABZ when
a3�0. The same free energy and phase diagrams are associ-
ated with A�e�y� and B�e�y�.

B. K� „Kx ,Ky… is oriented along a generic direction
in the x-y plane

When K� �Kx ,Ky� is oriented along a generic direction in
the x-y plane, the order parameter has four components
��1 ,�2 ,�1

* ,�2
*�, each one being spanned by a �density,

transverse or longitudinal axial, or polar vector� wave along
one of the four directions �Kx ,Ky�, �−Kx ,Ky�, �Kx ,−Ky�,
�−Kx ,−Ky�. It yields three ordered phases �Table VI� denoted
by IE ��2=0 or �1=0�, IIE ���1�= ��2�� and IIIE ���1�� ��2�
�0� analogous to the subphases I±, II±, and III± of R �see
Table III�. They are chiral and either orthorhombic �IIE� or

TABLE III. List of the phases stabilized below the linear R phase �SmCP� when K� lies in the general
direction of the x-y plane. The first column indicates the wave type. The second column indicates the nature
of the waves. The following columns indicate the name and space group of the stable phases.

Vector waves �2=0 �I±� ��1�= ��2��0 �II±� ��1�� ��2��0 �III±�

R+ Transverse
longitudinal polar

P21/m�z� C2h
2

�2D�
Cm�y�c�x�m�z� D2h

17

�3D�
P21/m�z� C2h

2

�3D�
R− Transverse

longitudinal axial
P21/b�z� C2h

5

�2D�
Cm�y�c�x�a�z� D2h

18

�3D�
P21/b�z� C2h

5

�3D�

FIG. 5. Phase diagrams of the transitions R�SmCP�
→ I± , II± , III± �see Table III�. The axes represent phenomenological
coefficients, which are linear combinations of two external param-
eters such as temperature and concentration.
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monoclinic �IE and IIIE�. IE is columnar whereas IIE and IIIE
form three-dimensional lattices.

The structure of EL is actually incommensurate �11�. In-
deed, a spatial direction in the x-y plane �which would be
fixed if EL were commensurate, e.g., Ox� precesses in fact
slowly around k� in the incommensurate structure. The addi-

tional wave vector K� being normal to k�, the same precession
must affect the large-scale structures of the 2D and 3D sub-
phases of EL. A similar situation arises when a smectic den-
sity wave condenses in the modulated cholesteric state,
yielding twist-grain-boundaries �TGB� superstructures.
Similarly, we expect either TGB-type behavior or unwinding
of the incommensurate EL modulation at the
EL→higher-dimensional phases.

In the previous sections, we described 24 2D and 3D
phases generated by the condensation, in the three one-
dimensional vector-wave phases, of one or two waves nor-

mal to the helical axis. These structures are related by group-
subgroup relationships summarized in Fig. 10. Most phases
have an orthorhombic symmetry compatible with the rectan-
gular unit cell observed in several bent-core structures. Con-
sidering wave vectors not perpendicular to the helical axis
would lead to low-symmetry phases with nonrectangular
cells.

V. DISCUSSION

A. Experiments

Any ordered phase may be, in principle, identified by its
space group. The refinement of the motif �position and orga-
nization of the molecules in the unit cell� is then independent

FIG. 6. Molecular structures and group-subgroup relationships
between the phases I±, II±, III± �Table III�. The conventional ortho-
rhombic unit cells depicted for the 3D phases II± and III± contain
two primitive cells. In II+ the molecular polarizations are parallel to
Ox and the molecular planes are in the x-z plane. In III+ the polar-
izations are rotated around Ox in the x-y plane. In II− and II− only
the molecules lying within the visible sides of the cell are repre-
sented. The molecular planes are parallel to x-z. In I− and III− the
orientation of the molecule �a� is not locked along symmetric direc-
tions and it can change with temperature. The orientation of �b� is
obtained from that of �a� after a twofold rotation around Oz. The
orientation of �c� is obtained after a mirror symmetry transforma-
tion with respect to the x-y plane. The orientation of �d� is obtained
from �a� by space inversion.

FIG. 7. Unit cell in subphases �Tables IV and V� of EL�B2�. In
Bx the molecular polarizations p�q=a,b,c,d are in fact out of the x-z
plane. The orientations of the molecules �b�, �c�, and �d� are ob-
tained from that of �a� by applying the twofold rotations C2x, C2y,
and C2z, respectively: p�a= �px , py , pz�, p�b= �px ,−py ,−pz�,
p�c= �−px , py ,−pz�, p�d= �−px ,−py , pz�. In IE, IIE, and IIIE, the
molecules �b� are turned by C2z with respect to the molecules �a�.
In IIE the molecular polarizations are along Ox whereas in IE

and IIIE they have three independent components: p�a= �px , py , pz�,
p�b= �−px ,−py , pz�.
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of the phase identification since, as we have seen in the pre-
vious sections, several motifs can be attributed to a single
space group. However, the symmetries are difficult to evi-
dence experimentally, mainly because it is difficult to stabi-
lize large single domains in most bent-core phases. Thus, one
has to use indirect and incomplete information revealing the
symmetry groups. In this section, we use available experi-
mental data reporting �i� the group-subgroup relationships
deduced from the observed sequences of phases �in most of
the cases, on decreasing temperature the least symmetric
phase appears at the end of the sequence�, �ii� x-ray diffrac-
tion data, and �iii� electro-optic properties that provide some
insight into the point groups and the motifs of the ordered
phases.

The identification of the smectic B2 and SmCP phases
with EL and R, respectively, is supported by the experimen-
tal refinement of their molecular organizations �5,6,11�. B8 is
a tilted 1D phase presenting antiferroelectric switching that
appears in the sequence Crystal→Sm0→B8→ Isotropic liq-
uid �20�. Although the structures of Sm0 and B8 seem simi-
lar to that of B2, their optical textures show helical super-
structures distinguishing clearly the three phases. Moreover,
Bragg reflections at q /2 indicate a bilayer structure in B8
that is not seen in B2 or Sm0. Since it differs from B2, the
only chiral candidate for Sm0 is the primed elliptic EL�
phase �space group P21�, which is stabilized when the com-
plex amplitudes of two copies of the vector wave �see Eq.
�5�� are not “parallel” �i.e., have different phases� �21�. The
molecular polarizations remain antiferroelectric in the plane
of the smectic layers, but they become ferroelectric in the

direction of the helical axis. In EL� the monoclinic symme-
try relaxes the constraints imposed on the domain walls ge-
ometry in EL by the orthorhombic symmetry, leading to a
different variety of textures in the two phases. In all the 1D
vector-wave phases, the twofold helical symmetry 21 cannot
be broken, thus an additional order parameter is necessary
for describing the helical structure of B8. For instance, an
in-plane homogeneous polarization appearing at the
Sm0→B8 transition would break the equivalence of the two

TABLE IV. List of the phases stabilized below the elliptic EL

phase �B2� when K� is parallel to e�y or e�x. The first column indicates
the wave type. The second column indicates the nature of the
waves. The third and fourth columns indicate the names and space
groups of the unprimed and primed phases, respectively.

Vector waves Phases A /B Phases A� /B�

A �K� =e�x� Longitudinal Ax: P2221�z� D2
2 A�x: P2�x� C2

1

B �K� =e�x� Transverse Bx: P21212�y� D2
3 B�x: P21�x� C2

2

A �K� =e�y� Longitudinal Ay: P2221�z� D2
2 A�y: P2�y� C2

1

B �K� =e�y� Transverse By: P21212�x� D2
3 B�y: P21�y� C2

2

TABLE V. Stable phases below EL �B2� when two waves, A and
B, traveling along the same direction �e�x or e�y�, are condensed
together.

Wave type Phases A ,B

A+B �K� =e�x� ABZx: P21�z� C2
2

A+B �K� =e�x� ABx: P2�y� C2
1

A+B �K� =e�x� AB0x: P1 C1
1

A+B �K� =e�y� ABZy: P21�z� C2
2

A+B �K� =e�y� ABy: P2�x� C2
1

A+B �K� =e�y� AB0y: P1 C1
1

FIG. 8. AB-type subphases �Table V� of EL�B2�, stabilized
when the waves A�e�y� and B�e�y� condense simultaneously. The di-
rection of the macroscopic polarization is indicated for the mono-
clinic ABy, ABZ

y, and triclinic ABO
y phases. In ABZ

y and ABO
y

in-plane components of the molecular polarizations are omitted for
clarity.

FIG. 9. Phase diagrams of the transition EL�B2�→ �Ax ,Bx�
→ABx �or equivalently EL→ �Ay ,By�→ABy�.
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layers related by 21 in EL�, yielding Bragg reflections at q /2
in the corresponding triclinic and ferrielectric B8 phase. Fi-
nally, the circular phase has not yet been directly observed,
though several experimental observations led us �11� to pro-
pose that B7 is circular with a weak long-wavelength modu-
lation along a direction normal to its helical axis. It is not the
purpose of the present work to explain this modulation. On
the other hand, the 2D and 3D structures of B1, B3, B4, B5,
and B6 observed in bent-core systems �3� are not yet unam-
biguously clarified. The forthcoming analysis proposes a ten-
tative identification of their structures and space groups.

The phases B1 and B6 exhibit close physical properties.
B6 is stabilized on cooling under the isotropic liquid
�3,22�, with a layer spacing corresponding to one half
of the molecular length. B1 has been observed either under
the isotropic liquid or under B6 �22� in the sequence
I→B6→B1→Cry. Systems presenting simultaneously B1
and B2 are very rare �except when the B1→B2 transition is
induced under electric field �23��, making thus unlikely a
group-subgroup relationship between their symmetries. No
electro-optic switching is usually observed in B6, though
such a behavior has been evidenced in media of asymmetric
bent-core molecules with photoactive azo linkages �24�. B1
and B6 present similar fast dynamical molecular motions.
The weakness of the high-frequency absorption in B1 sup-
ports an antiparallel alignment of the in-plane dipolar mo-
ments �22�. Finally, x-ray diffraction patterns in B1 show a
rectangular 2D lattice.

The currently admitted structure model of B1 �3,25� co-
incides with the symmetry and the molecular configuration
of the phase A1

x pictured in Fig. 3�b�. However, A1
x is achiral

whereas the achiral character of B1 is not systematically
claimed in the literature �3�. The best chiral candidates are
then Ax or Ay, because they have the closest chiral structure
of A1

x. A similar structural model has been proposed for ex-
plaining the fluctuating local molecular arrangement in the
parent B6 phase �3,23�, though it appears usually as an
achiral smectic-type phase. We have to consider these obser-
vations with regard to the fact that in our approach the phase
R is smectic and achiral, as well as its two primed analogs
called R� �P21/m� and R� �Pmc21� �obtained from R when
the complex amplitudes of two linearly polarized waves �see
Eq. �4�� with the same vector wave k� have different phases
�21��. Accordingly, we arrive provisionally at the following
possible phase identifications: B6 is either R �R� ,R�� or A1

x,
whereas B1 corresponds either to A1

x, A, or Ay, However, the
symmetry refinement of B1 in Ref. �26� gives, using the 2D
space-group notation, the group P2mg, i.e., in 3D notation,
Pma2 �C2v

4 �. This group being achiral, it rules out the hy-
pothesis B1=Ax, Ay. On the other hand, Pma2, which is the
space group of the phase A1

y�, is polar so that, with this sym-

metry, B1 should be ferroelectric. Since no ferroelectricity is
reported in this system �3,28�, we guess the mirror symmetry
parallel to the x-y plane has not been taken into account
when P2mg has been assigned to B1 �as it is always the case
with the 2D notation�. Since several 3D space groups can be
“projected” onto a single 2D group, we assume that P2mg
represents in fact the apolar space group Pmma �D2h

5 � of A1
x

instead of Pma2. The only remaining candidates for B6 are
then the linear R phases �in Ref. �3�, Pelzl et al. claim that
the molecules are tilted in B6, yielding rather the identifica-
tion with EL or EL��.

This identification �B1=A1
x, B6=R ,R� ,R�� is in agree-

ment with the current interpretation describing B6 as an in-
tercalated smectic structure with strong lateral fluctuations
�see Fig. 11�. Within this approach, B6 appears as a smectic
proto-B1 phase, in which some molecules are intercalated
between those located at the layers centers. Steric interac-
tions exclude the covering of molecular arms so that, at the
scale of a few molecules in B6, a fluctuating rectangular cell
must appear when one molecule is intercalated. Let us notice
that the corresponding local molecular configuration differs

TABLE VI. List of the phases stabilized below the elliptic EL phase �B2� when K� lies in the general
direction of the x-y plane. The first row indicates the equilibrium conditions of the order-parameter compo-
nents �1 and �2. The second row indicates the space groups and the dimensions of the stable phases.

�1=�2=0 �EL� �2=0 �IE� ��1�= ��2��0 �IIE� ��1�� ��2� �IIIE�

P2221�z� D2
2 �1D� P21�z� C2

2 �2D� C2221�z� D2
2 �3D� P21�z� C2

2 �3D�

FIG. 10. Group-subgroup relationships. Elliptic, rectangular,
and thick rectangular boxes indicate 1D, 2D, and 3D structures,
respectively. The phases inside gray boxes are achiral. �a� When the
wave vector is parallel to e�x, the symbols Ai, Bi, A�i, and B�i, A and
B represent A1

x, A2
x, etc. When the wave vector is parallel to e�y, Ai,

Bi, A�I, and B�i, A and B stand for the phases A1
y, A2

y, etc. �b� Phases
induced from R �SmCP� or EL �B2� when the wave vector lies in
the general direction of the smectic planes.
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from that represented in Fig. 3 for A1
x, where the interlayer

spacing coincides with the molecular length. Since in this
phase not even short-range translational order is observed in
the plane normal to k�, the intercalated molecules must be
randomly distributed. This suggests a disordering process for
the B1→B6 transition, in which the phase � of the polariza-
tion wave amplitude, �=�ei�, becomes completely disor-
dered, rather than a softening of the order parameter modulus
�. Let us notice that, in this approach, the R phase, which is
the parent structure of B1, has a lattice spacing equal to one
molecular length L, whereas it is 2L in SmCP �R� and B2
�EL� �Fig. 11�. This means that, although they belong for-
mally to the same phase, SmCP and B1 arise from the iso-
tropic phases with distinct order parameters: transverse polar
waves with k=� /L and k=2� /L, respectively. Since SmCP
and B2, on the one hand, and B1, on the other hand, appear
almost never in the same phase diagram, it is not necessary
to take into account these two waves simultaneously.

Several variants of B1 have been evidenced either in pure
bent-core systems �27,28� or in mixtures �29�. In the colum-
nar reversed B1 phase �28�, denoted by B1rev, the space
group is Pmmn �which becomes c2mm in the 2D notation,
by suppressing the gliding mirror of Pmmn parallel to k� and

K� �, and the molecular polarizations are parallel to the col-
umns. Its structure can be deduced from that of B1 after a
fourfold clockwise rotation of all the molecules around k�
�23�. Its space group and its molecular structure coincide
with the subphase B1

y of R pictured in the first column of Fig.
4. A tilted variant of B1rev has also been observed, called BX1
in Ref. �28�. Its chiral orthorhombic space group P21212
�D2

3� coincides with that of By in the configuration shown in
Fig. 8. It can be reached from either B2 �EL� or SmCP �R�
through second-order transition lines. From the analysis of
x-ray patterns on well-developed monodomains, Pelzl et al.
�26� proposed also the space groups P11n �Pb, C1h

2 � and
Pm21n �C2v

7 � for another B1-type phase. The latter coincides
with the symmetry of B1

y� �ferroelectric subphase of B1
y�,

whereas the former can be only created by superposing a
larger number of waves.

A three-dimensional phase labeled BY has been evidenced
in compounds similar to those giving B1 and B1rev. Although
its space group is not yet refined, Ref. �28� proposes a model
structure that can be obtained by breaking the columns of
B1rev with a density wave parallel to the columns. Since the
density wave does not break the point symmetry of B1rev, the
corresponding space group is also Pmmn �but with discrete
translations along the three spatial directions�. The authors of
Ref. �28� claim, however, that an anticlinic ordering is more
likely than a density wave. The simplest corresponding sce-
nario, leading from the isotropic liquid to BY, involves at
least three waves: �i� one polar transverse wave forming R,
�ii� a second polar transverse wave �with the type B1�e�y��,
with its wave vector normal to k� and its polarization parallel
to the polarization of the first wave, and �iii� an axial longi-

tudinal axial wave �with the type A2�e�x�� with A� parallel to
the polarization. Then, the density wave breaking the col-
umns turns out to be only a secondary �nonsymmetry-
breaking� order parameter induced by the vector wave.

Hence, in terms of the wave types of the R space group, we
denote conventionally this BY model by “B1�e�y�+A2�e�x�”
�see Tables I and II�. The unit-cell volume of the stable 3D
phase is thus twice that obtained when the density wave is
the symmetry-breaking order parameter. Its space group is
the subgroup Pccn �D2h

10� of Pmmn. However, experimental
results supporting this hypothesis are weak. Moreover, let us
note that �i� the B1�e�y�+A2�e�x� scenario is thermodynami-
cally unlikely �because two nonequivalent symmetry-
breaking representations of R must simultaneously con-
dense�, and �ii� neither R nor B1rev have been reported in
compounds where BY is observed, while such phases would
be likely stabilized in the B1�e�y�+A2�e�x� model. This leads us
to propose an alternative interpretation where the phases II±
�which have the same point group D2h as Pccn� are candi-
dates for representing BY. The main advantage of this hy-
pothesis is that it needs a single representation of R, and
provides neither B1 nor B1rev as stable phases.

Let us now discuss the lattice parameters measured in the
various subphases of B1. In all cases, one unit cell contains a
single molecule along Oz �k��, in agreement with the hypoth-
esis of a parent R phase. In B1 the two cell parameters have
similar magnitudes �3,30�, which supports our initial as-

sumption �k����K� �. On the contrary, in B1rev and BY the lattice

parameters along K� are much larger �28�, so that one unit cell
contains many molecules. This makes it less probable the
direct transition from the isotropic liquid, but does not con-
tradict the hypothesis of a common translational symmetry-
breaking mechanism for the molecular ordering in the three
directions. Indeed, the moduli of the corresponding wave
vectors are influenced by short-range steric as well as by
long-range electrostatic interactions. Thus, �k�� should be very
sensitive to the balance between the two interactions, and the
corresponding length in the direction normal to Oz must de-
pend on the preexisting molecular organization and may vary

FIG. 11. Molecular structures of the phases R and A1
x when

k=� /L �first row� and k=2 � /L �second row�. In the first row R
represents the phase SmCP whereas the A1

x structure has not been
experimentally reported. In the second row, R represents the inter-
calated structure B6, and A1

x the phase B1. The model by Roy et al.
involves the nematic phase, SmCP �or B2�, B1, and B6. The vector-
wave theory relates the isotropic liquid �or the nematic� to SmCP
and B2, on the one hand, and the isotropic phase �or nematic� to B1
and B6, on the other hand.
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significantly from one compound to one another. In the case
when �k��� �K� � is observed, the vector-wave model starting
from the isotropic phase with �k��= �K� � should be improved
with a secondary �nonsymmetry-breaking� induced strain-
tensor order parameter, which strongly expands the ordered
unit cell in the x-y plane. Let us, however, note the following
paradox: The equality �k����K� � comes from the hypothesis
the waves along Oz, Ox, and Oy are, in the underlying iso-
tropic state, of the same type �single mechanism�. This
equality is verified in B1, where the second wave is longitu-
dinal instead of transverse, while it is violated for B1rev
where the two waves are transverse. This leads us to have
doubts about the validity of the usual refinement of B1, and
consequently about its identification with A1

x.
The phases B2, B3, and B5 are characterized by their

electro-optic switching �3,27�. In B5 �31�, which appears on
cooling B2 or B6 �32�, density waves are observed in a di-
rection perpendicular to k�, associated with a short-range 2D
translational order. The corresponding unit cell is rectangu-
lar. Its electro-optic behavior is similar to that of B2 �20�
and, presumably, both phases have the same point group.
These properties of B5 are compatible with the phases Ax,
Ay, Bx, and By �Table IV�, which have a rectangular unit cell
and the same orthorhombic �D2� point group as EL �i.e., B2�.
They can be obtained either from C or EL through second-
order transformations. On the other hand, Eremin et al. �33�
have observed the following complex sequence Iso→B2
→B�2→B�2→B5→BX→Cryst of transitions in a five-ring
fluorinated bent-core mesogen. BX denotes an orthogonal
highly disordered 3D phase exhibiting electro-optic switch-
ing properties with a possible helical superstructure. B�2 and
B�2 are also switchable and might be two-dimensional; how-
ever, their symmetries and structures are not given in Ref.
�33�. Comparing the experimental sequence with the theoret-
ical phase relations presented in Fig. 10�b� yields the follow-
ing possibilities: BX=IIIE, B5=IE, and B�2, B�2=Ax, Ay, Bx,
or By. They respect the group-subgroup relationships sug-
gested by the observed transition sequence �except for
B2→B�2�, and they are in agreement with the chiral and
dimensional features of the observed phases. However, the
experimental data are too incomplete to rule out the possi-
bilities BX=IIE or B5=Ax, Ay, Bx, or By �but in this case the
transition B�2→B5 would be reentrant�.

B3 and B4 �often referred to as the “smectic blue” phase�
appear on cooling after a sequence of phases involving B2.
For instance, the sequence Iso→B2→B3→B4 is reported
by Jakli et al. �34� in pure achiral bent-core molecules and
by Araoka et al. �35� in a mixture of chiral and achiral mol-
ecules. The shorter sequences, Iso→B2→B3→Cryst �36�,
Iso→B7→B4→Cryst �37�, and Iso→B2→B4 �38� can
also be observed. Since B3 and B4 are chiral and three-
dimensional, it follows that the single theoretical vector-
wave candidates are IIE and IIIE. The monoclinic ferroelec-
tric group of IIE, being a subgroup of the IIIE orthorhombic
symmetry, it is natural to identify B3 with IIIE and B4 with
IIE. Both being subphases of the chiral incommensurate
modulated B2 phase, one expects helical modulations to oc-
cur in both structures if the crystalline order is weak enough.
We have shown that IIIE is nonpolar �point group D2� while

IIE is ferroelectric �point group C2�, property which is not
observed in B4. Nevertheless, since the modulation could
cancel the macroscopic polarization in IIE, its identification
with B4 remains possible.

Ferroelectricity is usually evidenced in liquid crystals ei-
ther by the observation of a single peak in one half period of
the current response to a triangular voltage, or by second
harmonic generation experiments. Several smectic �B2 and
B7� and columnar �B5� bent-core subphases exhibit some-
times this property �27,39�. These three phases have similar
local structures and present either antiferroelectric or ferro-
electric behaviors in various conditions. One can obtain such
behaviors when, within our model, the complex amplitudes
�e.g., � and ��� of two copies of a single wave have different
phases �e.g., �����. This happens, for instance, in the
primed 1D helical C� �point group C�� and elliptic EL�
�space group P21� phases �21�, which may be thus associated
with the observed ferroelectric variants of B2 and B7, re-
spectively. The macroscopic polarization appears in these
two cases in the direction of k�, making them antiferroelectric
in the x-y plane and ferroelectric along Oz. The same mecha-
nism can also lead to the ferrielectric phases A�x,y, B�x,y,
which are thereby likely candidates for the polar B5 phase.
Within this model ferroelectricity turns out to be a weak
improper effect. Along this way, let us stress a major differ-
ence of our model with the popular heuristic interpretation in
terms of homogeneous ordered layers packing �40�. In our
approach, ferroelectricity is an induced secondary effect, re-
sulting from the phase shift between primary antiferroelectric
and anticlinic waves. On the contrary, in the layers packing
approach, homogeneous polar layers are sticken either in
ferroelectric �synclinic� or antiferroelectric �anticlinic� con-
figurations, yielding at least four unlikely distinct primary
mechanisms �density wave+homogeneous polar and axial
vectors+vector waves�. Moreover, in this case ferroelectric-
ity would be a strong proper effect.

The previous analysis is summarized in Table VII. Crucial
predictive features of the phenomenological approach con-
cern the electric-field behaviors of the stable phases. Such
behaviors can be theoretically studied for each separate
phase, as we have done for the phases C, R, and EL in Ref.
�11�, and needs firstly a clear experimental identification of
the corresponding zero-field molecular structures and wave
patterns. As long as the observed structures are not definitely
refined, theoretical identifications remain rather speculative.
For instance, the models based on a TGB-type �twist-grain-
boundary� state �35,41� or on a glassy state often claimed for
B4, are sharply different from our identification with IIE and
IIIE. Along this line we claim also the possibility of long-
wavelength helical modulations in the elliptic and subelliptic
phases �42�. However, we have not taken into account the
possibility of a helical modulation for the vector wave itself,
so that we are not able yet to predict or contradict the pos-
sibility of TGB behaviors in the vector-wave model.

B. Theories

Most of the available theories of bent-core systems deal
with either nematic or smectic �B2, B7, SmCP� phases. Us-
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ing a third-rank tensor order parameter Lubensky et al. �43�
predict a number of low-symmetry nematics, which have not
yet been evidenced but could be useful to understand the
local molecular orientation in translationally ordered phases.
They predict also a number of biaxial smectic phases, which
are neither ferroelectric nor antiferroelectric and have thus no
connection with the vector-wave phases. Along a different
way, we have used two second-rank tensors �44� to describe
the possible orientation orders arising in the uniaxial and
biaxial phases observed with bent-core molecules. Vanakaras
et al. �45� predict uniaxial and biaxial nematic and smectic
phases in liquids of biaxial molecules. Kats et al. �46� study
the transitions between SmA and B2 with an order parameter
consisting of axial and polar vectors together with a pseudo-
scalar. This approach is similar to the vector-wave approach
when one only considers the B2 phase. Analogously, Sel-
inger �47� uses a pseudoscalar wave condensing in the smec-
tic A phase in which the polar order preexists. He explains
thus the chiral symmetry breaking in B2 but not its vector
character. Roy et al. �48� start also from the SmA phase, in
the layers of which axial and polar coupled vectors yield tilt
and polarization orders characteristic of bent-core smectic
phases. It is usually claimed in the literature that B2 can
appear with four different structures, denoted by SmCS,FPA,F
according to the synclinic/anticlinic and ferroelectric/
antiferroelectric possible interlayer configurations. This point
of view is contradictory with our phenomenological ap-
proach. Indeed, it assumes the condensation of several non-
equivalent order parameters in SmA: axial and polar waves
together with axial and polar homogeneous vectors. This im-
plies the very unlikely simultaneous condensation of five dis-
tinct order parameters �including the SmA density wave� in
the isotropic liquid. Moreover, the various stable phases
should be then very different since they are related to com-
pletely distinct �at the symmetry point of view� ordering
mechanisms. For us, the single possibility for B2 is SmCAPA
�i.e., EL� whereas the antiferroelectric variant of R can be
represented by SmAPA �or SmACA for its anticlinic variant�,
which both arise from a single mechanism in the isotropic
liquid �or possibly from the nematic or SmA phases�.

On the other hand, only very few theoretical works have
yet been devoted to the 2D and 3D bent-core phases.
Vaupotic et al. �49� propose a model describing in-plane
modulations in B2 giving rise to the modulated B7 phase
�that we have considered as approximately 1D at the begin-
ning of this section�. In Ref. �49�, the parent B2 phase is
assumed to be in the SmCSPF configuration, i.e., with a syn-
clinic and ferroelectric order. Although this configuration is
not permitted by our approach, in which all the 1D phases
are anticlinic and antiferroelectric, the idea involving a long-
wavelength modulation of the B2 structure is similar to our
own point of view concerning B7. To our knowledge, there
exists a single theoretical work, by Roy et al. �50�, account-
ing for the columnar bent-core phases. These authors re-
marked that, although B1/B6 and B2 are seldom stabilized in
a single compound, the sequence B6→B1→B2 is often ob-
served by increasing the chain length of the molecules. A
theoretical study of this sequence compels to take into ac-
count the difference in the lattice spacings 2L and L of B2
and B1 �or B6� �see Fig. 11�. In this goal, they introduce

three density waves in the uniaxial nematic phase, with wave
vectors k0e�z+kxe�x, k0e�z−kxe�x, and 2k0e�z, where k0=� /L �L is
the molecular length� coupled with a transverse vector wave
PA. When kx=0, the B2 phase �in fact, it is rather the SmCP
phase, i.e. R, since they neglect the molecular tilt� is stabi-
lized. When the density waves k0e�z±kx e�x vanish, B6 is sta-
bilized whereas B1 appears when the three order parameters
onset simultaneously. The nematic→B6 transition is pre-
dicted to be second order whereas all the other transitions are
first order. Let us remark that the wave vector of the polar-
ization wave PA is not fixed in the model by Roy et al. since
it is equal to k0e�z in SmCP and to 2k0e�z in B6, so that in fact
two such waves should be incorporated in their model. With
this additional vector wave �2k0e�z� the third density wave
�2k0e�z� turns out to be, as in the vector-wave model, a sec-
ondary order parameter without significant physical effects.

This model has various common features with the vector-
wave approach because it involves polar and scalar waves �in
our theory the wave A1�e�x� might also be a density wave�.
However, the set of waves used by Roy et al. is slightly
different from that in our theory. In particular, in our ap-
proach the density waves are normal to Oz: k� = ±kxe�x
whereas they are not in Ref. �50�. On the other hand, their
model �50� is “richer” because it involves simultaneously
waves with wave vectors k0e�z �when kx=0� and 2k0e�z. Thus,
the vector-wave model works out separately the transitions
nematic→SmCP �R�→B2 �EL� and nematic→B6 �R�
→B1 �A1

x�, while Ref. �50� works out simultaneously the
transitions nematic→SmCP→B→B1 �in the vector-wave
model, the parent phase may be nematic as well as isotropic�.

�i� Focusing attention on the B6→B1 transition reveals
the following difference: In our theory this transition is
spanned by a two-branch longitudinal polar �or density�
wave, while it is spanned by a four-branch density wave in
Ref. �50�. This yields second- and first-order transitions at

TABLE VII. Identification of the bent-core states with the
phases stabilized in the vector-wave model.

Phases Nonferroelectric Ferroelectric

SmCP R

B1 A1
x

B1rev B1
y B1

y�

BY B1�e�y�+A2�e�x�, II±

BX1 Bx,y

B2 EL C�, EL�
B�2 Ax,y, Bx,y

B�2 Ax,y, Bx,y

B3 IIIE

B4 IIE

B5 Ax,y, Bx,y A�x,y, B�x,y

BX IIE, IIIE

B6 R, R�, R�
B7 C C�, EL�
Sm0 EL�
B8
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the lowest degree approximation of the free energy, in the
vector wave and the density wave approaches, respectively.

�ii� Finally, let us notice that in Ref. �50�, the nematic
→SmCP transition results from the condensation of the vec-
tor wave PA and of the density wave k� =2k0e�z. However, the
density wave is in this case a secondary �nonsymmetry-
breaking� order parameter, induced by the primary conden-
sation of PA. This description coincides thus exactly with
that of the vector-wave model.

The vector-wave approach provides a unified and physi-
cally coherent scheme including a large class of bent-core
mesophases. Our work shows that a single mechanism might
explain the complex polymorphism observed in this family
of materials. Indeed, the phases made with such molecules
present strong physical similarities and are often distin-
guished only by tenuous effects, whereas they are immedi-
ately distinguished from other known liquid crystals. These
features support the idea of a common mechanism underly-
ing the stabilization of most translationally ordered bent-core
mesophases. The hypothesis of a single transverse-wave con-
densation accounting for the uni-, bi-, and tri-dimensional
bent-core phases is not yet completely satisfactory since the
commonly accepted structure of B1 results from the conden-
sation of a longitudinal wave in R. Nevertheless, B1 is per-
fectly characterized as a subphase of R, which itself results
from the condensation of a transverse wave in the isotropic
liquid. On the other hand, we have seen that 15 among the 23
phases �included 1D� resulting from a transverse wave are
fair candidates for the identification of the other bent-core
phases or subphases. Conversely, all the observed phases,
except �maybe� B1, are compatible with the transverse
vector-wave mechanism. This provisional success of the
vector-wave model in the class of columnar and soft-
crystalline phases supports the general validity of this ap-
proach in the whole field of bent-core phases.
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APPENDIX

The symmetry-breaking mechanisms presented in Secs.
III and IV are classified according to irreducible representa-
tions of the high-symmetry space groups of R �Pmma�, C
��122�, and EL �P2221�. These representations are com-

pletely characterized by their wave vectors K� and by the

small representations of the corresponding K� point groups.
Unlike k�* in the isotropic liquid, the little groups are discrete

and K� * possesses a finite number of branches �except in C�.
We consider only the representations with wave vectors K�

normal to k�. Since the Brillouin zones of R, C, and EL are
unbounded �1D phases are homogeneous in the x-y plane�,
the irreducible representations are direct products of one ten-
sor �irreducible representation of the little group �13�� with n
scalar sinusoidal waves, where n is the number of branches

in K� *.

1. In R

In R, three nonequivalent directions in the reciprocal x-y
plane �normal to k�� give distinct little groups, as follows:

�1� K� =Kxe�x. The star K� * of K� has two branches. The little
group �C2v� has four nonequivalent one-dimensional small
representations, denoted by A1, A2, B1, and B2 �see Ref.
�13��. They transform respectively as a scalar, an axial vector
parallel to Oz, a polar vector parallel to Ox, and a polar
vector parallel to Oy. They yield four two-dimensional irre-
ducible representations of Pmma, which we denote by
A1�e�x�, A2�e�x�, B1�e�x�, and B2�e�x�. The symmetries of the
general directions in each of these spaces are larger than the
kernels of the corresponding representations. Thus, the
mechanism associated with these representations must be
completed by enlarging the representation spaces. This
completion leads to the following reducible representations
of Pmma: A1�e�x� � A1�e�x�, A2�e�x� � A2�e�x�, B1�e�x� � B1�e�x�,
and B2�e�x� � B2�e�x�. For each of them, the general direction
has the same symmetry group as the kernel, corresponding to
the so-called primed phases.

�2� K� =Ky. K� * has two branches. The little group is again
C2v, with the same four small representations A1, A2, B1, and
B2. They transform respectively as a scalar, an axial vector
parallel to Oz, a polar vector parallel to Oy, and a polar
vector parallel to Ox. The corresponding irreducible repre-
sentations A1�e�y�, A2�e�y�, B1�e�y�, and B2�e�y� are two-
dimensional and yield nonminimal groups. The complete re-
ducible representations associated with these mechanisms
are, thus, A1�e�y� � A1�e�y�, A2�e�y� � A2�e�y�, B1�e�y� � B1�e�y�,
and B2�e�y� � B2�e�y�.

�3� K� =Kxe�x+Kye�y. Its star contains four branches. The
little group CS is generated by the mirror plane normal to Oz
and has two one-component small representations denoted
by R+ and R−. They transform as a scalar and a vector par-
allel to Oz, respectively. The corresponding irreducible four-

dimensional representations of Pmma are R+�K� � �e.g., four

scalar waves� and R−�K� � �e.g., four transverse vector waves�.
The corresponding general directions have the same symme-
try as the kernel so that these irreducible representations
yield complete mechanisms.

2. In C

In C, K� * has infinitely many branches forming a circle in
the reciprocal space. A and B denote the two small represen-

tations associated with the little group C2 of K� . They trans-

form respectively as a scalar and a vector normal to K� . A�K� �
and B�K� � have an infinite number of components spanned by
scalar waves or transverse �axial or polar� vector waves, re-
spectively, traveling in all the directions of the x-y plane.

We consider only the simplest case in which two

branches, K� and −K� , become active at the transition. The

choice of the direction of K� is arbitrary since the symmetry
group of C ��122� is isotropic in the x-y plane. Changing this
direction �i.e., varying the corresponding Goldstone angle�
amounts to generate other equivalent domains of the same
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ordered phases. A�K� � and B�K� � become then finite dimen-
sional since they both are spanned by only two waves. They
span irreducible representations of the space group T�C2,
where T is the translation group of C. Likewise in R, two
isomorphic copies of such irreducible representations are
necessary to stabilize all the accessible low-symmetry struc-
tures, so that the most general 16-dimensional representation

is A�K� � � A�K� � � B�K� � � B�K� �. The stable ordered phases are
then the same as the subphases of EL.

3. In EL

The space group of EL is a subgroup of both R and C
groups. The irreducible representations of C and R become
reducible in EL. In addition, nonequivalent representations in
C and R may become equivalent in EL. Comparing with R is

more easy. Again one has to consider three directions for K� .

�1� K� =Kxe�x, K� * has two branches. The little group is C2
instead of C2v in R. The small representations A1 and A2 of
C2v become equivalent in C2 and give rise to the single small
representation denoted by A, whereas B1 and B2 give rise to

B. They transform respectively as a scalar and a polar vector
parallel to Ox. The two-dimensional irreducible representa-
tions A�e�x� and B�e�x� are spanned by two scalar waves and
two transverse polar vector waves, respectively. As in R, two
copies of these representations are necessary to complete the
corresponding symmetry-breaking mechanisms, which are
thus associated with the reducible representations A�e�x�
� A�e�x� and B�e�x� � B�e�x�.

�2� K� =Kye�y. K� * has two branches. The little group is C2

instead of C2v in R. The same collapse of the R irreducible
representations yields two irreducible mechanisms: A�e�y�
and B�e�y� spanned by two scalar waves and two transverse
vector waves. The complete mechanism correspond to the
reducible four-dimensional representations A�e�y� � A�e�y� and
B�e�y� � B�e�y�.

�3� K� =Kxe�x+Kye�y. Its star contains four branches. The
little group is reduced to the identity and has a single scalar
representation. The corresponding irreducible four-
dimensional representation of Pmma is spanned, for in-
stance, by a set of four scalar waves.
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